
Chapter 5

Prime Numbers

5.1 The fundamental theorem of arithmetic

Definition: An integer p > 1 is said to be prime if its only positive divisors are 1
and p itself. All other integers greater than 1 are called composite.

A composite number n can be written as a product n = ab of two strictly smaller
numbers 1 < a, b < n. Note that, by convention, 1 is neither prime nor composite.
Here are all primes below 100:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

Given a prime p and another integer a, either a is a multiple of p or gcd(p, a) = 1.
Indeed, gcd(p, a) divides p, so it must be either 1 or p, and since gcd(p, a) also divides
a then either gcd(p, a) = 1 or a is a multiple of p. This can be used to prove a very
important property of primes:

Theorem 5.1.1. Let p be a prime.

(a) Given two integers a and b, if p|ab then either p|a or p|b.

(b) Given k integers a1, a2, . . . , ak, if p|
∏k

i=1 ai then p|ai for some 1 ≤ i ≤ k.

Proof.

(a) If p|a we are done. Otherwise gcd(p, a) = 1 and by Bezout’s identity there exist
linear coefficients u and v for which 1 = ua + vp. Multiplying both sides by b
we get b = uab + vpb. Since p divides ab, p divides the whole sum uab + vpb.
Therefore p|b.

(b) The proof proceeds by induction. The case k = 1 is trivial and k = 2 is handled
in part (a). So we assume that the claim holds for some k > 1 and prove that it
also holds for k + 1. Given that p|

∏k+1
i=1 ai, we put b =

∏k
i=1 ai. Since p|bak+1,

part (a) implies that either p|ak+1 or p|b. In both cases the claim holds, in the
latter case by the induction hypothesis. This completes the proof by induction.
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Theorem 5.1.1 can be used to derive a fundamental theorem of number theory. It
is so fundamental it has “fundamental” in its name.

Theorem 5.1.2 (Fundamental Theorem of Arithmetic). Every positive integer can
be represented in a unique way as a product of primes,

n = p1p2 · · · pk (p1 ≤ p2 ≤ . . . ≤ pk).

Proof. We first prove existence and then uniqueness. Actually, we already proved
existence in one of the previous lectures as an illustration of strong induction, but
give the prove here again for completeness. So, to prove that every integer can be
represented as a product of primes we use strong induction. The base case n = 1
holds because the empty product, as we previously discussed, is defined to equal 1.
The induction hypothesis assumes that for some n > 1, all positive integers k < n
can be represented as a product of primes. If n is prime, then it is trivially a product
of primes. Otherwise it can be written as n = ab, for 1 < a, b < n. By the induction
hypothesis, both a and b are products of primes, so their product n is also a product
of primes. This proves existence.

The proof that the above representation is unique proceeds by contradiction. As-
sume then that there exists some positive integer that can be represented as a product
of primes in (at least) two ways. By the well-ordering principle, there is a smallest
such integer n. It holds that n = p1p2 · · · pk = q1q2 · · · ql, where p1 ≤ p2 ≤ . . . ≤ pk,
q1 ≤ q2 ≤ . . . ≤ ql, and pi 6= qi for some i. By Theorem 5.1.1(b), since pi|q1q2 · · · ql,
there must exist some qj for which pi|qj. Since qj is prime and pi > 1, this can
only occur when pi = qj. Thus we can eliminate pi and qj from the equation
p1p2 · · · pk = q1q2 · · · ql and get two distinct representations of the positive integer
number n/pi as a product of primes. This contradicts the assumption that n is the
smallest positive integer with this property, and concludes the proof of uniqueness.

5.2 The infinity of primes

Here is another fundamental result with a proof from Euclid’s Elements:

Theorem 5.2.1. There are infinitely many primes.

Proof. Assume for the sake of contradiction that there is only a finite set of primes,
p1, p2, . . . , pn. Consider the number

p = p1p2 . . . pn + 1.

By Theorem 5.1.2, p has a prime divisor, which has to be pi, for some 1 ≤ i ≤ n.
Since pi divides both p and p1p2 . . . pn, it also divides p − p1p2 . . . pn = 1. However,
this is impossible since pi > 1. This contradiction proves the theorem.

Let’s get some more mileage out of Euclid’s proof. The results below show that
not only do the primes never stop, but the number of primes p ≤ x is at least a certain
natural function of x, namely at least log log x. (Here the base of the logarithm is 2.)
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Theorem 5.2.2. The n-th prime pn satisfies pn ≤ 22n−1
for all n ≥ 1.

Proof. We proceed using strong induction. For the base case, the first prime is 2 = 220
.

Assume that the claim holds for all primes p1 through pk. Consider p = p1p2 . . . pk +1.
As in the above proof, p has a prime factor that is not one of the first k primes. This
prime factor is thus at least as large as pk+1, which implies

pk+1 ≤ p = p1p2 . . . pk + 1 ≤ 220

221 · · · 22k−1

+ 1

= 21+2+4+...+2k−1

+ 1

= 22k−1 + 1

=
1

2
22k

+ 1

≤ 22k

.

This is precisely the induction step we needed, and concludes the proof by strong
induction.

Denote by π(x) the number of primes p ≤ x.

Corollary 5.2.3. For x ≥ 2, π(x) ≥ blog log xc+ 1.

Proof. Plugging n = blog log xc + 1 into Theorem 5.2.2 implies that the n-th prime
is at most x. Thus there are at least n primes below x.

For general education, you should know that this is by far not the best possible
estimate. A celebrated achievement in number theory is the Prime Number Theorem
due to Hadamard and de la Vallée Poussin, which states that x/ ln x (here we use the
natural logarithm) is the “right” bound, in the sense that

lim
x→∞

π(x)

x/ ln x
→ 1.
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